Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Immunol ; 24(8): 1265-1280, 2023 08.
Article in English | MEDLINE | ID: mdl-37414907

ABSTRACT

High-dimensional approaches have revealed heterogeneity amongst dendritic cells (DCs), including a population of transitional DCs (tDCs) in mice and humans. However, the origin and relationship of tDCs to other DC subsets has been unclear. Here we show that tDCs are distinct from other well-characterized DCs and conventional DC precursors (pre-cDCs). We demonstrate that tDCs originate from bone marrow progenitors shared with plasmacytoid DCs (pDCs). In the periphery, tDCs contribute to the pool of ESAM+ type 2 DCs (DC2s), and these DC2s have pDC-related developmental features. Different from pre-cDCs, tDCs have less turnover, capture antigen, respond to stimuli and activate antigen-specific naïve T cells, all characteristics of differentiated DCs. Different from pDCs, viral sensing by tDCs results in IL-1ß secretion and fatal immune pathology in a murine coronavirus model. Our findings suggest that tDCs are a distinct pDC-related subset with a DC2 differentiation potential and unique proinflammatory function during viral infections.


Subject(s)
Bone Marrow , Dendritic Cells , Animals , Mice , Antiviral Agents , Bone Marrow/immunology , Cell Differentiation , Dendritic Cells/classification , Dendritic Cells/immunology
2.
Front Immunol ; 14: 997376, 2023.
Article in English | MEDLINE | ID: mdl-36960049

ABSTRACT

At homeostasis, a substantial proportion of Foxp3+ T regulatory cells (Tregs) have an activated phenotype associated with enhanced TCR signals and these effector Treg cells (eTregs) co-express elevated levels of PD-1 and CTLA-4. Short term in vivo blockade of the PD-1 or CTLA-4 pathways results in increased eTreg populations, while combination blockade of both pathways had an additive effect. Mechanistically, combination blockade resulted in a reduction of suppressive phospho-SHP2 Y580 in eTreg cells which was associated with increased proliferation, enhanced production of IL-10, and reduced dendritic cell and macrophage expression of CD80 and MHC-II. Thus, at homeostasis, PD-1 and CTLA-4 function additively to regulate eTreg function and the ability to target these pathways in Treg cells may be useful to modulate inflammation.


Subject(s)
Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory , T-Lymphocytes, Regulatory/metabolism , CTLA-4 Antigen/genetics , Programmed Cell Death 1 Receptor/metabolism , B7-1 Antigen/metabolism , Homeostasis
3.
Cell Rep ; 42(3): 112147, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36827187

ABSTRACT

Interleukin-18 (IL-18) promotes natural killer (NK) and T cell production of interferon (IFN)-γ, a key factor in resistance to Toxoplasma gondii, but previous work has shown a limited role for endogenous IL-18 in control of this parasite. Although infection with T. gondii results in release of IL-18, the production of IFN-γ induces high levels of the IL-18 binding protein (IL-18BP). Antagonism of IL-18BP with a "decoy-to-the-decoy" (D2D) IL-18 construct that does not signal but rather binds IL-18BP results in enhanced innate lymphoid cell (ILC) and T cell responses and improved parasite control. In addition, the use of IL-18 resistant to IL-18BP ("decoy-resistant" IL-18 [DR-18]) is more effective than exogenous IL-18 at promoting innate resistance to infection. DR-18 enhances CD4+ T cell production of IFN-γ but results in CD4+ T cell-mediated pathology. Thus, endogenous IL-18BP restrains aberrant immune pathology, and this study highlights strategies that can be used to tune this regulatory pathway for optimal anti-pathogen responses.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Humans , Animals , Interleukin-18/metabolism , Killer Cells, Natural , Interleukin-12/metabolism , Immunity, Innate
4.
Nat Immunol ; 23(5): 743-756, 2022 05.
Article in English | MEDLINE | ID: mdl-35437326

ABSTRACT

Phenotypic and transcriptional profiling of regulatory T (Treg) cells at homeostasis reveals that T cell receptor activation promotes Treg cells with an effector phenotype (eTreg) characterized by the production of interleukin-10 and expression of the inhibitory receptor PD-1. At homeostasis, blockade of the PD-1 pathway results in enhanced eTreg cell activity, whereas during infection with Toxoplasma gondii, early interferon-γ upregulates myeloid cell expression of PD-L1 associated with reduced Treg cell populations. In infected mice, blockade of PD-L1, complete deletion of PD-1 or lineage-specific deletion of PD-1 in Treg cells prevents loss of eTreg cells. These interventions resulted in a reduced ratio of pathogen-specific effector T cells: eTreg cells and increased levels of interleukin-10 that mitigated the development of immunopathology, but which could compromise parasite control. Thus, eTreg cell expression of PD-1 acts as a sensor to rapidly tune the pool of eTreg cells at homeostasis and during inflammatory processes.


Subject(s)
B7-H1 Antigen , Programmed Cell Death 1 Receptor , T-Lymphocytes, Regulatory , Toxoplasmosis, Animal , Animals , B7-H1 Antigen/immunology , Homeostasis , Interleukin-10/immunology , Mice , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/immunology , Toxoplasma/immunology , Toxoplasmosis, Animal/immunology
5.
Cell Rep ; 29(11): 3736-3750.e8, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31825848

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are sensor cells with diverse immune functions, from type I interferon (IFN-I) production to antigen presentation, T cell activation, and tolerance. Regulation of these functions remains poorly understood but could be mediated by functionally specialized pDC subpopulations. We address pDC diversity using a high-dimensional single-cell approach: mass cytometry (CyTOF). Our analysis uncovers a murine pDC-like population that specializes in antigen presentation with limited capacity for IFN-I production. Using a multifaceted cross-species comparison, we show that this pDC-like population is the definitive murine equivalent of the recently described human AXL+ DCs, which we unify under the name transitional DCs (tDCs) given their continuum of pDC and cDC2 characteristics. tDCs share developmental traits with pDCs, as well as recruitment dynamics during viral infection. Altogether, we provide a framework for deciphering the function of pDCs and tDCs during diseases, which has the potential to open new avenues for therapeutic design.


Subject(s)
Antigen Presentation , Dendritic Cells/immunology , Interferon-gamma/metabolism , Adult , Animals , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/virology , Female , Flow Cytometry/methods , Humans , Interferon-gamma/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Orthomyxoviridae/immunology , Orthomyxoviridae/pathogenicity , Single-Cell Analysis/methods , Species Specificity , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...